Filtros : "IF-FMT" "TERMODINÂMICA" Limpar

Filtros



Refine with date range


  • Source: Physical Review B. Unidade: IF

    Assunto: TERMODINÂMICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LACERDA, Artur Machado et al. Quantum thermodynamics with fast driving and strong coupling via the mesoscopic leads approach. Physical Review B, v. 107, 2023Tradução . . Disponível em: https://doi.org/10.1103/PhysRevB.107.195117. Acesso em: 21 maio 2024.
    • APA

      Lacerda, A. M., Purkayastha, A., Kewming, M. J., Goold, J., & Landi, G. T. (2023). Quantum thermodynamics with fast driving and strong coupling via the mesoscopic leads approach. Physical Review B, 107. doi:10.1103/PhysRevB.107.195117
    • NLM

      Lacerda AM, Purkayastha A, Kewming MJ, Goold J, Landi GT. Quantum thermodynamics with fast driving and strong coupling via the mesoscopic leads approach [Internet]. Physical Review B. 2023 ; 107[citado 2024 maio 21 ] Available from: https://doi.org/10.1103/PhysRevB.107.195117
    • Vancouver

      Lacerda AM, Purkayastha A, Kewming MJ, Goold J, Landi GT. Quantum thermodynamics with fast driving and strong coupling via the mesoscopic leads approach [Internet]. Physical Review B. 2023 ; 107[citado 2024 maio 21 ] Available from: https://doi.org/10.1103/PhysRevB.107.195117
  • Unidade: IF

    Subjects: COLISÕES, TERMODINÂMICA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MELO, Filipe V. et al. Implementation of a two-stroke quantum heat engine with a collisional model. . São Paulo: Instituto de Física, Universidade de São Paulo. Disponível em: https://arxiv.org/pdf/2203.13773.pdf. Acesso em: 21 maio 2024. , 2022
    • APA

      Melo, F. V., Sá, N., Roditi, I., Souza, A. M., Oliveira, I. S., Sarthour, R. S., & Landi, G. T. (2022). Implementation of a two-stroke quantum heat engine with a collisional model. São Paulo: Instituto de Física, Universidade de São Paulo. Recuperado de https://arxiv.org/pdf/2203.13773.pdf
    • NLM

      Melo FV, Sá N, Roditi I, Souza AM, Oliveira IS, Sarthour RS, Landi GT. Implementation of a two-stroke quantum heat engine with a collisional model [Internet]. 2022 ;[citado 2024 maio 21 ] Available from: https://arxiv.org/pdf/2203.13773.pdf
    • Vancouver

      Melo FV, Sá N, Roditi I, Souza AM, Oliveira IS, Sarthour RS, Landi GT. Implementation of a two-stroke quantum heat engine with a collisional model [Internet]. 2022 ;[citado 2024 maio 21 ] Available from: https://arxiv.org/pdf/2203.13773.pdf
  • Source: Physical Review. A. Unidade: IF

    Assunto: TERMODINÂMICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JANOVITCH, Marcelo e LANDI, Gabriel Teixeira. Quantum mean-square predictors and thermodynamics. Physical Review. A, v. 105, 2022Tradução . . Disponível em: https://doi.org/10.1103/PhysRevA.105.022217. Acesso em: 21 maio 2024.
    • APA

      Janovitch, M., & Landi, G. T. (2022). Quantum mean-square predictors and thermodynamics. Physical Review. A, 105. doi:10.1103/PhysRevA.105.022217
    • NLM

      Janovitch M, Landi GT. Quantum mean-square predictors and thermodynamics [Internet]. Physical Review. A. 2022 ; 105[citado 2024 maio 21 ] Available from: https://doi.org/10.1103/PhysRevA.105.022217
    • Vancouver

      Janovitch M, Landi GT. Quantum mean-square predictors and thermodynamics [Internet]. Physical Review. A. 2022 ; 105[citado 2024 maio 21 ] Available from: https://doi.org/10.1103/PhysRevA.105.022217
  • Source: Reviews of Modern Physics. Unidade: IF

    Subjects: FÍSICA MODERNA, TERMODINÂMICA, ÓPTICA QUÂNTICA, INFORMAÇÃO QUÂNTICA, ENTROPIA, PROCESSOS ESTOCÁSTICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LANDI, Gabriel e PATERNOSTRO, Mauro. Irreversible entropy production: From classical to quantum. Reviews of Modern Physics, v. 93, n. 3, 2021Tradução . . Disponível em: https://doi.org/10.1103/RevModPhys.93.035008. Acesso em: 21 maio 2024.
    • APA

      Landi, G., & Paternostro, M. (2021). Irreversible entropy production: From classical to quantum. Reviews of Modern Physics, 93( 3). doi:10.1103/RevModPhys.93.035008
    • NLM

      Landi G, Paternostro M. Irreversible entropy production: From classical to quantum [Internet]. Reviews of Modern Physics. 2021 ; 93( 3):[citado 2024 maio 21 ] Available from: https://doi.org/10.1103/RevModPhys.93.035008
    • Vancouver

      Landi G, Paternostro M. Irreversible entropy production: From classical to quantum [Internet]. Reviews of Modern Physics. 2021 ; 93( 3):[citado 2024 maio 21 ] Available from: https://doi.org/10.1103/RevModPhys.93.035008
  • Source: PRX Quantum. Unidade: IF

    Subjects: FÍSICA MODERNA, TERMODINÂMICA, CONDENSADO DE BOSE-EINSTEIN

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HOVHANNISYAN, Karen et al. Optimal Quantum Thermometry with Coarse-Grained Measurements. PRX Quantum, v. 2, n. 2, 2021Tradução . . Disponível em: https://doi.org/10.1103/PRXQuantum.2.020322. Acesso em: 21 maio 2024.
    • APA

      Hovhannisyan, K., Jørgensen, M. R., Landi, G., Alhambra, A., Brask, J. B., & Llobet, M. P. (2021). Optimal Quantum Thermometry with Coarse-Grained Measurements. PRX Quantum, 2( 2). doi:10.1103/PRXQuantum.2.020322
    • NLM

      Hovhannisyan K, Jørgensen MR, Landi G, Alhambra A, Brask JB, Llobet MP. Optimal Quantum Thermometry with Coarse-Grained Measurements [Internet]. PRX Quantum. 2021 ; 2( 2):[citado 2024 maio 21 ] Available from: https://doi.org/10.1103/PRXQuantum.2.020322
    • Vancouver

      Hovhannisyan K, Jørgensen MR, Landi G, Alhambra A, Brask JB, Llobet MP. Optimal Quantum Thermometry with Coarse-Grained Measurements [Internet]. PRX Quantum. 2021 ; 2( 2):[citado 2024 maio 21 ] Available from: https://doi.org/10.1103/PRXQuantum.2.020322
  • Unidade: IF

    Assunto: TERMODINÂMICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MICADEI, Kaonan et al. Experimental Validation of Fully Quantum Fluctuation Theorems Using Dynamic Bayesian Networks. v. 127, 2021Tradução . . Disponível em: https://doi.org/10.1103/PhysRevLett.127.180603. Acesso em: 21 maio 2024.
    • APA

      Micadei, K., Peterson, J. P. S., Souza, A. M., Sarthour, R. S., Oliveira, I. S., Landi, G. T., et al. (2021). Experimental Validation of Fully Quantum Fluctuation Theorems Using Dynamic Bayesian Networks, 127. doi:10.1103/PhysRevLett.127.180603
    • NLM

      Micadei K, Peterson JPS, Souza AM, Sarthour RS, Oliveira IS, Landi GT, Serra RM, Lutz E. Experimental Validation of Fully Quantum Fluctuation Theorems Using Dynamic Bayesian Networks [Internet]. 2021 ; 127[citado 2024 maio 21 ] Available from: https://doi.org/10.1103/PhysRevLett.127.180603
    • Vancouver

      Micadei K, Peterson JPS, Souza AM, Sarthour RS, Oliveira IS, Landi GT, Serra RM, Lutz E. Experimental Validation of Fully Quantum Fluctuation Theorems Using Dynamic Bayesian Networks [Internet]. 2021 ; 127[citado 2024 maio 21 ] Available from: https://doi.org/10.1103/PhysRevLett.127.180603
  • Source: New Journal of Physics. Unidade: IF

    Subjects: FÍSICA MODERNA, TERMODINÂMICA, ENTROPIA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VARIZI, Adalberto et al. Contributions from populations and coherences in non-equilibrium entropy production. New Journal of Physics, v. 23, n. 6, 2021Tradução . . Disponível em: https://doi.org/10.1088/1367-2630/abfe20. Acesso em: 21 maio 2024.
    • APA

      Varizi, A., Cipolla, M. A., Llobet, M. P., Drumond, R. C., & Landi, G. (2021). Contributions from populations and coherences in non-equilibrium entropy production. New Journal of Physics, 23( 6). doi:10.1088/1367-2630/abfe20
    • NLM

      Varizi A, Cipolla MA, Llobet MP, Drumond RC, Landi G. Contributions from populations and coherences in non-equilibrium entropy production [Internet]. New Journal of Physics. 2021 ; 23( 6):[citado 2024 maio 21 ] Available from: https://doi.org/10.1088/1367-2630/abfe20
    • Vancouver

      Varizi A, Cipolla MA, Llobet MP, Drumond RC, Landi G. Contributions from populations and coherences in non-equilibrium entropy production [Internet]. New Journal of Physics. 2021 ; 23( 6):[citado 2024 maio 21 ] Available from: https://doi.org/10.1088/1367-2630/abfe20
  • Source: Journal of Physics A: Mathematical and Theoretical. Unidade: IF

    Subjects: FÍSICA MODERNA, TERMODINÂMICA, SISTEMA QUÂNTICO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MALOUF, William T. B. et al. Analysis of the conditional mutual information in ballistic and diffusive non-equilibrium steady-states. Journal of Physics A: Mathematical and Theoretical, v. 53, n. 30, 2020Tradução . . Disponível em: https://doi.org/10.1088/1751-8121/ab93fd. Acesso em: 21 maio 2024.
    • APA

      Malouf, W. T. B., Goold, J., Adesso, G., & Landi, G. (2020). Analysis of the conditional mutual information in ballistic and diffusive non-equilibrium steady-states. Journal of Physics A: Mathematical and Theoretical, 53( 30). doi:10.1088/1751-8121/ab93fd
    • NLM

      Malouf WTB, Goold J, Adesso G, Landi G. Analysis of the conditional mutual information in ballistic and diffusive non-equilibrium steady-states [Internet]. Journal of Physics A: Mathematical and Theoretical. 2020 ; 53( 30):[citado 2024 maio 21 ] Available from: https://doi.org/10.1088/1751-8121/ab93fd
    • Vancouver

      Malouf WTB, Goold J, Adesso G, Landi G. Analysis of the conditional mutual information in ballistic and diffusive non-equilibrium steady-states [Internet]. Journal of Physics A: Mathematical and Theoretical. 2020 ; 53( 30):[citado 2024 maio 21 ] Available from: https://doi.org/10.1088/1751-8121/ab93fd
  • Unidade: IF

    Subjects: ESTRUTURA ELETRÔNICA, TERMODINÂMICA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARANTES, J. T. e FAZZIO, Adalberto e SILVA, Antonio Jose Roque da. Structural, electronic, and magnetic properties of 'MN'-doped Ge nanowires by ab initio calculations. . São Paulo: Instituto de Física, Universidade de São Paulo. Disponível em: https://arxiv.org/pdf/cond-mat/0608315.pdf. Acesso em: 21 maio 2024. , 2020
    • APA

      Arantes, J. T., Fazzio, A., & Silva, A. J. R. da. (2020). Structural, electronic, and magnetic properties of 'MN'-doped Ge nanowires by ab initio calculations. São Paulo: Instituto de Física, Universidade de São Paulo. Recuperado de https://arxiv.org/pdf/cond-mat/0608315.pdf
    • NLM

      Arantes JT, Fazzio A, Silva AJR da. Structural, electronic, and magnetic properties of 'MN'-doped Ge nanowires by ab initio calculations [Internet]. 2020 ;[citado 2024 maio 21 ] Available from: https://arxiv.org/pdf/cond-mat/0608315.pdf
    • Vancouver

      Arantes JT, Fazzio A, Silva AJR da. Structural, electronic, and magnetic properties of 'MN'-doped Ge nanowires by ab initio calculations [Internet]. 2020 ;[citado 2024 maio 21 ] Available from: https://arxiv.org/pdf/cond-mat/0608315.pdf
  • Source: Quantum Information. Unidade: IF

    Subjects: SISTEMA QUÂNTICO, TERMODINÂMICA, ENTROPIA, SUPERSIMETRIA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELENCHIA, Alessio et al. Entropy production in continuously measured Gaussian quantum systems. Quantum Information, v. 6, 2020Tradução . . Disponível em: https://doi.org/10.1038/s41534-020-00334-6. Acesso em: 21 maio 2024.
    • APA

      Belenchia, A., Mancino, L., Landi, G., & Paternostro, M. (2020). Entropy production in continuously measured Gaussian quantum systems. Quantum Information, 6. doi:10.1038/s41534-020-00334-6
    • NLM

      Belenchia A, Mancino L, Landi G, Paternostro M. Entropy production in continuously measured Gaussian quantum systems [Internet]. Quantum Information. 2020 ; 6[citado 2024 maio 21 ] Available from: https://doi.org/10.1038/s41534-020-00334-6
    • Vancouver

      Belenchia A, Mancino L, Landi G, Paternostro M. Entropy production in continuously measured Gaussian quantum systems [Internet]. Quantum Information. 2020 ; 6[citado 2024 maio 21 ] Available from: https://doi.org/10.1038/s41534-020-00334-6
  • Source: Physical Review A. Unidade: IF

    Subjects: SISTEMA QUÂNTICO, TERMODINÂMICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LANDI, Gabriel Teixeira e OLIVEIRA, André L. Fonseca de e BUKSMAN, Efrain. Thermodynamic analysis of quantum error correcting engines. Physical Review A, v. A101, 2020Tradução . . Disponível em: https://doi.org/10.1103/PhysRevA.101.042106. Acesso em: 21 maio 2024.
    • APA

      Landi, G. T., Oliveira, A. L. F. de, & Buksman, E. (2020). Thermodynamic analysis of quantum error correcting engines. Physical Review A, A101. doi:10.1103/PhysRevA.101.042106
    • NLM

      Landi GT, Oliveira ALF de, Buksman E. Thermodynamic analysis of quantum error correcting engines [Internet]. Physical Review A. 2020 ; A101[citado 2024 maio 21 ] Available from: https://doi.org/10.1103/PhysRevA.101.042106
    • Vancouver

      Landi GT, Oliveira ALF de, Buksman E. Thermodynamic analysis of quantum error correcting engines [Internet]. Physical Review A. 2020 ; A101[citado 2024 maio 21 ] Available from: https://doi.org/10.1103/PhysRevA.101.042106
  • Source: Physical Review Research. Unidade: IF

    Subjects: SISTEMA QUÂNTICO, TERMODINÂMICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOES, Bruno O e FIORE, Carlos Eduardo e LANDI, Gabriel Teixeira. Quantum features of entropy production in driven-dissipative transitions. Physical Review Research, v. 2, 2020Tradução . . Disponível em: https://doi.org/10.1103/PhysRevResearch.2.013136. Acesso em: 21 maio 2024.
    • APA

      Goes, B. O., Fiore, C. E., & Landi, G. T. (2020). Quantum features of entropy production in driven-dissipative transitions. Physical Review Research, 2. doi:10.1103/PhysRevResearch.2.013136
    • NLM

      Goes BO, Fiore CE, Landi GT. Quantum features of entropy production in driven-dissipative transitions [Internet]. Physical Review Research. 2020 ; 2[citado 2024 maio 21 ] Available from: https://doi.org/10.1103/PhysRevResearch.2.013136
    • Vancouver

      Goes BO, Fiore CE, Landi GT. Quantum features of entropy production in driven-dissipative transitions [Internet]. Physical Review Research. 2020 ; 2[citado 2024 maio 21 ] Available from: https://doi.org/10.1103/PhysRevResearch.2.013136
  • Source: Destaque em Física. Unidade: IF

    Subjects: TERMODINÂMICA, CALOR, SISTEMA QUÂNTICO

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LANDI, Gabriel Teixeira. Teoremas mostram como correlações quânticas afetam trocas de calor. Tradução . Destaque em Física, São Paulo, 2020. . Acesso em: 21 maio 2024.
    • APA

      Landi, G. T. (2020). Teoremas mostram como correlações quânticas afetam trocas de calor. Destaque em Física. São Paulo: Instituto de Física, Universidade de São Paulo.
    • NLM

      Landi GT. Teoremas mostram como correlações quânticas afetam trocas de calor. Destaque em Física. 2020 ;[citado 2024 maio 21 ]
    • Vancouver

      Landi GT. Teoremas mostram como correlações quânticas afetam trocas de calor. Destaque em Física. 2020 ;[citado 2024 maio 21 ]
  • Unidade: IF

    Subjects: ESTRUTURA ELETRÔNICA, TERMODINÂMICA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SCOPEL, W. L. e FAZZIO, Adalberto e SILVA, Antonio Jose Roque da. 'HF' defects in 'HF''O' IND. 2'/'SI'. . São Paulo: Instituto de Física, Universidade de São Paulo. Disponível em: https://arxiv.org/pdf/cond-mat/0608677.pdf. Acesso em: 21 maio 2024. , 2020
    • APA

      Scopel, W. L., Fazzio, A., & Silva, A. J. R. da. (2020). 'HF' defects in 'HF''O' IND. 2'/'SI'. São Paulo: Instituto de Física, Universidade de São Paulo. Recuperado de https://arxiv.org/pdf/cond-mat/0608677.pdf
    • NLM

      Scopel WL, Fazzio A, Silva AJR da. 'HF' defects in 'HF''O' IND. 2'/'SI' [Internet]. 2020 ;[citado 2024 maio 21 ] Available from: https://arxiv.org/pdf/cond-mat/0608677.pdf
    • Vancouver

      Scopel WL, Fazzio A, Silva AJR da. 'HF' defects in 'HF''O' IND. 2'/'SI' [Internet]. 2020 ;[citado 2024 maio 21 ] Available from: https://arxiv.org/pdf/cond-mat/0608677.pdf
  • Unidade: IF

    Subjects: SISTEMA QUÂNTICO, TERMODINÂMICA, SUPERSIMETRIA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CALEGARI, Susane et al. Genuine multipartite correlations in dicke superradiance. v. 101, 2020Tradução . . Disponível em: https://doi.org/10.1103/PhysRevA.101.052310. Acesso em: 21 maio 2024.
    • APA

      Calegari, S., Lourenço, A. C., Duzzioni, E. I., & Landi, G. T. (2020). Genuine multipartite correlations in dicke superradiance, 101. doi:10.1103/PhysRevA.101.052310
    • NLM

      Calegari S, Lourenço AC, Duzzioni EI, Landi GT. Genuine multipartite correlations in dicke superradiance [Internet]. 2020 ; 101[citado 2024 maio 21 ] Available from: https://doi.org/10.1103/PhysRevA.101.052310
    • Vancouver

      Calegari S, Lourenço AC, Duzzioni EI, Landi GT. Genuine multipartite correlations in dicke superradiance [Internet]. 2020 ; 101[citado 2024 maio 21 ] Available from: https://doi.org/10.1103/PhysRevA.101.052310
  • Conference titles: Encontro de Outono da Sociedade Brasileira de Física. Unidade: IF

    Assunto: TERMODINÂMICA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VARIZI, Adalberto D e DRUMOND, Raphael C e LANDI, Gabriel Teixeira. Quantum coherence and criticality in thermodynamic driving. 2020, Anais.. São Paulo: SBF-Sociedade Brasileira de Física, 2020. Disponível em: https://sec.sbfisica.org.br/eventos/eosbf/2020/sys/resumos/R0607-1.pdf. Acesso em: 21 maio 2024.
    • APA

      Varizi, A. D., Drumond, R. C., & Landi, G. T. (2020). Quantum coherence and criticality in thermodynamic driving. In . São Paulo: SBF-Sociedade Brasileira de Física. Recuperado de https://sec.sbfisica.org.br/eventos/eosbf/2020/sys/resumos/R0607-1.pdf
    • NLM

      Varizi AD, Drumond RC, Landi GT. Quantum coherence and criticality in thermodynamic driving [Internet]. 2020 ;[citado 2024 maio 21 ] Available from: https://sec.sbfisica.org.br/eventos/eosbf/2020/sys/resumos/R0607-1.pdf
    • Vancouver

      Varizi AD, Drumond RC, Landi GT. Quantum coherence and criticality in thermodynamic driving [Internet]. 2020 ;[citado 2024 maio 21 ] Available from: https://sec.sbfisica.org.br/eventos/eosbf/2020/sys/resumos/R0607-1.pdf
  • Source: Physical Review Letters. Unidade: IF

    Subjects: SISTEMA QUÂNTICO, TERMODINÂMICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TIMPANARO, André M e SANTOS, Jader Pereira dos e LANDI, Gabriel Teixeira. Landauer’s principle at zero temperature. Physical Review Letters, v. 124, 2020Tradução . . Disponível em: https://doi.org/10.1103/PhysRevLett.124.240601. Acesso em: 21 maio 2024.
    • APA

      Timpanaro, A. M., Santos, J. P. dos, & Landi, G. T. (2020). Landauer’s principle at zero temperature. Physical Review Letters, 124. doi:10.1103/PhysRevLett.124.240601
    • NLM

      Timpanaro AM, Santos JP dos, Landi GT. Landauer’s principle at zero temperature [Internet]. Physical Review Letters. 2020 ; 124[citado 2024 maio 21 ] Available from: https://doi.org/10.1103/PhysRevLett.124.240601
    • Vancouver

      Timpanaro AM, Santos JP dos, Landi GT. Landauer’s principle at zero temperature [Internet]. Physical Review Letters. 2020 ; 124[citado 2024 maio 21 ] Available from: https://doi.org/10.1103/PhysRevLett.124.240601
  • Source: Physical Review B. Unidade: IF

    Subjects: SISTEMA QUÂNTICO, TERMODINÂMICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOURENÇO, Antônio C. et al. Genuine multipartite correlations distribution in the criticality of lipkin-meshkov-glick model. Physical Review B, v. 101, 2020Tradução . . Disponível em: https://doi.org/10.1103/PhysRevB.101.054431. Acesso em: 21 maio 2024.
    • APA

      Lourenço, A. C., Calegari, S., Maciel, T. O., Duzzioni, E. I., Debarba, T., & Landi, G. T. (2020). Genuine multipartite correlations distribution in the criticality of lipkin-meshkov-glick model. Physical Review B, 101. doi:10.1103/PhysRevB.101.054431
    • NLM

      Lourenço AC, Calegari S, Maciel TO, Duzzioni EI, Debarba T, Landi GT. Genuine multipartite correlations distribution in the criticality of lipkin-meshkov-glick model [Internet]. Physical Review B. 2020 ;101[citado 2024 maio 21 ] Available from: https://doi.org/10.1103/PhysRevB.101.054431
    • Vancouver

      Lourenço AC, Calegari S, Maciel TO, Duzzioni EI, Debarba T, Landi GT. Genuine multipartite correlations distribution in the criticality of lipkin-meshkov-glick model [Internet]. Physical Review B. 2020 ;101[citado 2024 maio 21 ] Available from: https://doi.org/10.1103/PhysRevB.101.054431
  • Unidade: IF

    Subjects: SISTEMA QUÂNTICO, TERMODINÂMICA, SUPERSIMETRIA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUARNIERI, Giacomo et al. Thermodynamics of precision in quantum non-equilibrium steady states. . São Paulo: Instituto de Física, Universidade de São Paulo. Disponível em: https://arxiv.org/abs/1901.10428. Acesso em: 21 maio 2024. , 2019
    • APA

      Guarnieri, G., Goold, J., Clark, S. R., & Landi, G. T. (2019). Thermodynamics of precision in quantum non-equilibrium steady states. São Paulo: Instituto de Física, Universidade de São Paulo. Recuperado de https://arxiv.org/abs/1901.10428
    • NLM

      Guarnieri G, Goold J, Clark SR, Landi GT. Thermodynamics of precision in quantum non-equilibrium steady states [Internet]. 2019 ;[citado 2024 maio 21 ] Available from: https://arxiv.org/abs/1901.10428
    • Vancouver

      Guarnieri G, Goold J, Clark SR, Landi GT. Thermodynamics of precision in quantum non-equilibrium steady states [Internet]. 2019 ;[citado 2024 maio 21 ] Available from: https://arxiv.org/abs/1901.10428
  • Unidade: IF

    Subjects: SISTEMA QUÂNTICO, TERMODINÂMICA, SUPERSIMETRIA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MICADEI, Kaonan et al. Reversing the direction of heat flow using quantum correlations. . São Paulo: Instituto de Física, Universidade de São Paulo. Disponível em: https://arxiv.org/abs/1711.03323. Acesso em: 21 maio 2024. , 2019
    • APA

      Micadei, K., Peterson, J. P. S., Paternostro, M., Souza, A. M., Sarthour, R. S., Oliveira, I. S., et al. (2019). Reversing the direction of heat flow using quantum correlations. São Paulo: Instituto de Física, Universidade de São Paulo. Recuperado de https://arxiv.org/abs/1711.03323
    • NLM

      Micadei K, Peterson JPS, Paternostro M, Souza AM, Sarthour RS, Oliveira IS, Batalhão TB, Serra RM, Lutz E, Santos JP, Landi GT. Reversing the direction of heat flow using quantum correlations [Internet]. 2019 ;[citado 2024 maio 21 ] Available from: https://arxiv.org/abs/1711.03323
    • Vancouver

      Micadei K, Peterson JPS, Paternostro M, Souza AM, Sarthour RS, Oliveira IS, Batalhão TB, Serra RM, Lutz E, Santos JP, Landi GT. Reversing the direction of heat flow using quantum correlations [Internet]. 2019 ;[citado 2024 maio 21 ] Available from: https://arxiv.org/abs/1711.03323

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024